An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus.

نویسندگان

  • Peng R Chen
  • Taeok Bae
  • Wade A Williams
  • Erica M Duguid
  • Phoebe A Rice
  • Olaf Schneewind
  • Chuan He
چکیده

Staphylococcus aureus is a human pathogen responsible for most wound and hospital-acquired infections. The protein MgrA is both an important virulence determinant during infection and a regulator of antibiotic resistance in S. aureus. The crystal structure of the MgrA homodimer, solved at 2.86 A, indicates the presence of a unique cysteine residue located at the interface of the protein dimer. We discovered that this cysteine residue can be oxidized by various reactive oxygen species, such as hydrogen peroxide and organic hydroperoxide. Cysteine oxidation leads to dissociation of MgrA from DNA and initiation of signaling pathways that turn on antibiotic resistance in S. aureus. The oxidation-sensing mechanism is typically used by bacteria to counter challenges of reactive oxygen and nitrogen species. Our study reveals that in S. aureus, MgrA adopts a similar mechanism but uses it to globally regulate different defensive pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction for Gupta et al., RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA.

RNAIII, the effector of the agr quorum-sensing system, plays a key role in virulence gene regulation in Staphylococcus aureus, but how RNAIII transcriptionally regulates its downstream genes is not completely understood. Here, we show that RNAIII stabilizes mgrA mRNA, thereby increasing the production of MgrA, a global transcriptional regulator that affects the expression of many genes. The mgr...

متن کامل

Transcription Profiling of the mgrA Regulon in Staphylococcus aureus.

MgrA has been shown to affect multiple Staphylococcus aureus genes involved in virulence and antibiotic resistance. To comprehensively identify the target genes regulated by mgrA, we employed a microarray method to analyze the transcription profiles of S. aureus Newman, its isogeneic mgrA mutant, and an MgrA-overproducing derivative. We compared genes that were differentially expressed at expon...

متن کامل

Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus.

We have previously identified mgrA (rat) as a regulator of autolysis in Staphylococcus aureus. Besides its effect on autolytic activity, we recently found alterations in the expression of regulator and target virulence genes in the mgrA mutant. Northern analysis and transcription fusion assays showed that inactivation of mgrA has led to the downregulation of RNAIII of agr and hla and upregulati...

متن کامل

Expression of SarX, a negative regulator of agr and exoprotein synthesis, is activated by MgrA in Staphylococcus aureus.

The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, saeRS, arlRS, and sarA-like genes. As part of our continuing efforts to understand the regulatory mechanisms that involve sarA-like genes, we describe here the characterization of a novel transcriptional regulator called SarX, a member of the Sa...

متن کامل

Targeting MgrA-mediated virulence regulation in Staphylococcus aureus.

Increasing antibiotic resistance in human pathogens necessitates the development of new approaches against infections. Targeting virulence regulation at the transcriptional level represents a promising strategy yet to be explored. A global transcriptional regulator, MgrA in Staphylococcus aureus, was identified previously as a key virulence determinant. We have performed a fluorescence anisotro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemical biology

دوره 2 11  شماره 

صفحات  -

تاریخ انتشار 2006